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ABSTRACT 9

We present a theoretical framework that can be used to treat

approximation techniques for very general classes of parameter estimation _

problems involving distributed systems that are either first or second order in %

time. Using the approach developed, one can obtain both convergence and ' ,

stability (continuous dependence of parameter estimates with respect to the

observations) under very weak regularity and compactness assumptions on the

set of admissible parameters. This unified theory can be used for many

problems found in the recent literature and in many cases offers significant 0
%-..-:..

improvements to existing results.
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1. Introduction

An important class of scientific problems related to the control of flexible

space structures entails the estimation of parameters in distributed or partial

differential equation models. These inverse or parameter identification "

problems arise in several contexts. A rather obvious class of such problems

involves the development and identification of physical models for flexible

structures - e.g., see [BCI], [BC2], [BCR], [BR2], [BPR], [BWIC], [BFW]. In these

problems one typically investigates models from structural mechanics which

contain parameters representing elastic properties (such as stiffness, damping) of

materials. The inverse problems then consist of estimating these parameters

using data obtained from observations of the system response to dynamic loading

or displacement. The partial differential equation models usually are second

order in time, higher order in space (for example, the Euler-Bernoulli or -. A

Timoshenko beam models and their higher dimensional analogues for plates, etc.).

The related inverse problems can prove quite challenging, but are extremely

important as a precursor to and integral part of the design of control strategies

for space structures. ".(-7

A second, less obvious, class of inverse problems that are important in the "A- *.". %

study of space structures involves those arising in material testing, in particular,

in the area of nondestructive evaluation of materials. These problems, such as S

those related to the detection of structural flaws (broken fibers, delaminations,

cracks) in fiber reinforced composite materials, have been addressed at NASA LI

(for example, in connection with evaluation of the solid rocket motors for !he - •

% .% %
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Space Shuttle) using a variety of techniques (acoustic, thermal, etc.). One

technique [HWW], [BKO] entails the use of thermal diffusivity properties (a

thermal tomography) to characterize materials. The resulting inverse problems

involve using boundary observations for the estimation of thermal diffusion

coefficients and interior boundaries of the domain (i.e. the geometrical

structure of the system domain) for the heat equation in two or three space

dimensions. These so-called domain identification problems thus constitute an

important class of parabolic system identification problems related to space

structures.

In this paper we present a general convergence/stability (continuous

dependence on observations) framework for approximation methods to treat

parameter identification problems (see [BCK]) involving distributed parameter S

systems. This new parameter estimation convergence framework combines a

weak version of the system (in terms of sesquilinear forms in the spirit used %

in [BKI1) with the resolvent convergence form of the Trotter-Kato •

approximation theorem [PJ, [BK2]. The very general convergence results
A%

depend (in addition, of course, to the usual properties for the associated

approximating subspaces) on three properties of the parameter (q c Q)

dependent sesquilinear form o(q)(.,-) describing the system: (A) continuity

(with respect to the parameter); (B) uniform (in the parameter) coercivitv; and ,

(C) uniform (in the parameter) boundedness. The approach permits one to

give convergence and stability arguments in inverse problems under extremely

weak compactness assumptions on the admissible parameter spaces Q

(equivalent to those in typical variational or weak approaches--see (BI],

[BCR]) without requiring knowledge of smoothness of solutions usually a part

A .:r..7
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of the variational and general finite element type arguments. Thus this

approach combines in a single framework the best features of a semigroup

approximation approach (i.e., the Trotter-Kato theorem) with the best features

of a variational approach (weak assumptions on Q). The weakening of the

compactness criteria on Q is of great computational importance since the N

constraints associated with these criteria should be implemented in problems

(see [BI] for further discussion and examples).

An additional significant feature of the approach described in this paper

is that for first order systems it yields directly a stronger convergence (in the

spatial coordinate) than one readily obtains without extra effort in either the

convergence arguments using the usual operator convergence form of the

Trotter-Kato formulation (e.g., see Theorem 2.2 of [BCK] and Theorem 2.4 of

[KW]) or the finite element type variational arguments (e.g., see, Theorem 4.1

of [BRI] and the related remarks in [BKLI]).

While the approach we present here does involve coercivity of certain

sesquilinear forms associated with the system dynamics, its applicability is not .

restricted to parabolic systems which generate analytic semigroups. As we

shall demonstrate in Section 3 below, it can be used to treat problems in which

the underlying semigroup is not analytic (e.g., those involving Euler-Bernoulli

equations for beams with various types of damping-viscous, Kelvin-Voigt,

spatial hysteresis), improving substantially on some of the currently known

results for these problems. With appropriate modifications, this theoretical

framework can be generalized to also allow an elegant treatment of problems

involving functional partial differential equations, e.g., beams with Boltzmann

damping (i.e., time hysteresis) -- see [BFW].

%
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2. First Order Systems

We consider first order systems dependent on parameters q = Q described -

by an abstract equation

i(t) - A(q)u(t) + F(t,q)
(2.1)

u(O) = uo(q)
,. o

in a Hilbert space H. The admissible parameter space Q is a metric space

with metric d and for q E Q, we assume that A(q) is the infinitesimal S

generator of a C. semigroup T(t;q) on H. We assume that we are given

observations ii E H for the mild solution values u(ti,q) of (2.1); i.e., we solve

(2.1) in the sense

tV~t

u(t;q) = T(t;q)uo(q) + T(t-s;q)F(s,q)ds (2.2)
10 %

in H. We then consider the least squares identification (ID) problem of

minimizing over q E Q the functional

J(q) = . Iu(ti;c) - (2.3)

Such problems are, in general, infinite dimensional in both the state u and

the parameter q and thus one must consider a sequence of computationally

tractable approximating problems. These can be, for our purposes, best

described in terms of parameter dependent sesquilinear forms o(q)(.,-)

associated with (2.1) or (2.2) (i.e., forms which define the operators A(q) in

(2.1)). For more details and examples in the parabolic case, we refer the

reader to [BKII. Briefly, let V and H be Hilbert spaces with V continuously

'1
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and densely imbedded in H. Denote a family of parameter dependent

sesquilinear forms by oq): V x V - ,q C- Q. We assume that a possesses the

following properties:

(A) Continuity: For q,4 6= Q, we have for all 0,4; C- V 6ys

Io(q)(0,4') - o(Zj)(0,4')I -1 d~,jjjj

(B) Coercivity: There exist c> 0 and some real Xsuch that for q 6- Q,

* 6 V we have

o(q)(0,4') + Xj1 ,C11

(C) Boundedness: There exist c 2 > 0 such that for qc- Q, 0,0' E V we have

Under these assumptions, cr defines in the usual manner (e.g., see [K), [SI)

operators A(q) such that o<)O,' =(A(q)O,4'>H for 04E dom(A(q)), 4' E- V with

dom(A(q)) dense in V. Furthermore, A(q) is the generator of an analytic

semigroup T(t;q) on H (indeed, A(q) is sectorial with (kl - A(q))dom(A(q)) = H)

and mild solutions of (2.1) possess additional regularity (e.g. see Chap. 4 of [P] and

Chap. 4 of [5]) under appropriate assumptions on F. Property (B) guarantees that J

for X), X the resolvent operator RX(A(q)) =-(I - A(qj))-1 exists as a bounded '

00

operator on H; in fact, it follows readily from (B) that (assuming '*'H <, kI-1v) we

have%

CIIRX(A~~~q))02 4 OXA~)4>

IO~jX(A~j))Oj :

k~j~vRX(Aq))O

*.1 IY
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and hence for @ = V

IRX(A(q))4V v  k lo v . (2.4) -
ci

while for O E H we find

IRX(A(q)H 4 k2 144H' (2.5)

In addition, one can use (B) and (A) to argue that q - R,(A(q)) is a

continuous mapping from Q to V. It is these ideas that can be modified to

give resolvent convergence in the approximation schemes which we introduce

next.

We consider Galerkin type approximations in the context of sesquilinear

forms (e.g., see [BKI] for further details). Let HN be a family of finite ,

dimensional subspaces of H satisfying pNz -. z for z - H where pN is the

orthogonal projection of H onto HN. We further assume that HN C V and that

the family possesses certain V-approximation properties to be specified below.

If we now consider the restriction of o(q)(.,.) to HN x HN, we obtain

Koperators AN(q): HN - HN which, because of (B), satisfy a uniform dissipative

inequality and can be shown to generate semigroups TN(t;q) in HN. These are

then used to define approximating systems for (2.2):

rt
UN(t;q) = TN(t;q)pNu0(q) + 0 TN(t-s;q)pNF(s,q)ds. (2.6)J

One thus obtains a sequence of approximating ID problems consisting of

minimizing over Q

jN(q) = I [uN(ti;q) _ (2.7)

, 1.. I,

-"%.

t= X . .%A

. - "- . , I l~ l d~i i ~ d d di fid ll t, li 1id -dl-ll J di dl | l li " .. - ' _ , ,, , - -,
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In problems where Q is infinite dimensional (the usual case in many inverse "

problems of interest), on must also make approximations QM for Q (see [BD]

[BR2] for details). To include this aspect of the problem in our discussion - _

here does not entail any essential mathematical difficulties. Since it would

increase the notational clutter and provide no new mathematical insight, we

do not pursue the theory in that generality.

To obtain convergence and continuous dependence (of parameter estimates

with respect to observations) results for the solutions qN of minimizing jN in

(2.7), it suffices under the assumption that (Q,d) is a compact space (see [BI])

to argue: for arbitrary (qN) C Q with qN _ q we have uN(t;qN) - u(t;q) for each

t. Under reasonable assumptions on F and up,. this can be argued if one first

shows that TN(t;qN)pNz - T(t;q)z for arbitrary qN - q and z E H. To do this

one can use several versions of the Trotter- Kato theorem [P], [BK2]. We state

precisely the "resolvent convergence form" of this theorem in a form that is

general enough for us to use in several contexts subsequently in this paper.

Let X and XN, N = 1,2, ... , be Hilbert spaces, XN C X, and let pN: X - XN

be the orthogonal projection of X onto XN. We assume the XN's approximate J! P

X in the sense that PNx -. x for all x E X. Then we have:

Theorem 2.1: Let AN and A be infinitesimal generators of CO semigroups SN(t)

and S(t) on XN and X, respectively, satisfying:

(i) There exist constants w, M such that ISN(t) , Mew  for each N;

(ii) There exists k E p(A) 11N'=1 p(AN) with Re k > w such that

RX(AN)pNx -" R,(A)x for each x E X.

Then

INe-~~~~ i. &.-r4,:1: d
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(iii) For each x E X, SN(t)pNx -. S(t)x uniformly in t on any compact interval

[0,t l.

We may assume without loss of generality that the constants w and M of

(i) are chosen so that S(t) also satisfies the bound in (i).

There is an alternate version (we shall for obvious reasons refer to this U

version as the "operator convergence form") of the Trotter-Kato theorem which

has been frequently used [BCK], [BCI], [BC2I, [R] in parameter estimation

problems. This version replaces condition (ii) above by the condition:

(ii') There exists a set D dense in X such that for some X, (XI - A)) is dense

in X and ANPNx - Ax for all x c- D.

As we have already noted, it is the resolvent convergence form of this

theorem which we shall wish to make use of in our theoretical framework

since, as we shall show, for our first order systems condition (ii) will follow

readily from (A), (B), (C) and a condition on how HN approximates H. The .

entire theory will require only that Q be compact in the metric d used in the

continuity statement (A) for the sesquilinear form. This will, in general, be -'-

much weaker than that compactness required for use in proofs employing

condition (ii'), since the requirements on ,qN -' q" to insure AN(qN)PNz - A(q)z

typically involve convergence of some derivatives of the qN. For example, in '"

first order parabolic equations containing variable coefficients to be

estimated, this results in a requirement that Q be compact in H' whereas use

of the sesquilinear form approach developed in this paper requires only

compactness of Q in C or L* (see [BIJ for further discussion of this point).

N
'aV

ap
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Before turning to our convergence arguments, we state the convergence

properties required of the approximating subspaces HN alluded to above. ,

Throughout our discussions, we shall assume: -6

(Cl) For each z E V, there exists z = HN such that Iz - zIv 0 as

N-

Theorem 2.2: Let conditions (A), (B), (C) and (Cl) hold and qN . q in Q. Then

for X = Xo, RX(AN(qN))pNz - RX(A(q))z in the V norm for any z G H. ,0

O

Proof: First note that since AN(qN) results from the restriction of a to HN x

HN, we can choose X = Xo in (B) so that X e p(A(q)) .O=, p(AN(qN)) with X > w

(and indeed bounds similar to those of (2.4), (2.5) hold for RX(AN(qN))pN).

Let z E H be arbitrary and for notational convenience put w = w(q)

RX(A(q))z and wN - wN(qN) R (AN(qN))pNz. Since w r dom(A(q)) C V, we

may use condition (Cl) to define a sequence (wN) satisfying [1,N - wj " 0 as

N0

We wish to show IwN - wlv - 0. If we argue that IwN - w -" 0, the %

desired results follow immediately from the triangle inequality. V N

Let zN wN wN so that zN E HN cV. Using <.,-> to denote the inner

product in H, we find ' .'.-

o(q)(w,zN) = <-A(q)w,zN> =<(X - A(q))w,z N > ' ->

<z,zN> X<w,zN>

and

N.'

• •. . . . . . . .. . .. . . - . a" -" %

-. -. ',,,-Lr,_,' '-, '. .. '.". . : ,',/'." , ." ." ," ." " h'. ' '' ''-' .''-''. .'.- . " "2-.-"." " "'.,.. ". .' " ". " ." "" "'". ", .- '..'-
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o(qN)(wN,zN) (-AN(qN)W1N'zN> = (X A Acj)wN zN>-~w~

-<pNZZN> - )<WN,ZN)

(z,z N> - k(wN,ZN).

Hence we have

o(q)(w,zN) O(qN)(wN ZN) + X(WN -W,ZN>.

Using this with (B) we obtain :

1 i O(qN)(ZN,zN) + XIZN12 -~N(NZ) N NN+XZ
cjzvH - o'')w H

o)(zN) + ),(W-wN,ZN> - O(CqN)(^NZN) + )]ZNi -

qc)(w,zN) - o(qN)(W.zN) + o(qN)(w wN,ZN) %f

+ )X((W-wN, zN> + IzNI2p.

0
If we use (A) and (C), we thus have

1 2l~ (q qN+ C2IW4 NIVIZNIV + ),((w-wN,ZN> + IZN12)

Finally, since

(w-wN,zN> <W ~N,ZN> + <^ N-NZN) = w--wN'ZN> -z (zN>,

the above inequality may be written 1;.

N2)IIIZI + C2W- NVINIV + \(w - NZN>

c~jz II. Z cV + - 1 ,;I INV + ~j~w ~,IZN(
d ~ + c21W w I 1zNII (H

Thus, using <1 H k[(V wc find

ci~zNV d(q,qN)IWIV + +lk2I VIV,
(C2..,.

%. %, %~
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which, from the definition of (wN } and the fact that qN . q, yields the
**%

desired convergence zN = wN - wN - 0 in V norm.

Since V norm convergence is stronger than H-norm convergence, we can_,,

use the results of this theorem along with Theorem 2.1 for X = H, XN = H%,

pN p, AN =AN(qN), A = A(q) to obtain immediately that TN(t;qN)PNz -

T(t;q)z for z E H, the convergence being in the H norm. This along with (2.2)

and (2.6) can be used to argue the desired convergence uN(t;qN) - u(t;q) in the

H norm (assuming, of course, appropriate smoothness of F and uo in q E Q).

However, with no additional assumptions and only a little extra effort, one

can obtain this convergence in the V norm. As we shall explain below, this

stronger convergence is often immensely useful in parameter estimation

problems where the observations may be continuous in the V norm, but not in

the H norm.

Theorem 2.3: Under the hypotheses of Theorem 2.2, we have for each z 6 H, •
-.. **-

TN(t;q)PNz -T(tq)z in the V norm for t > 0, uniformly in t on compact

subintervals. , .

S
Proof: To establish these results, we first apply the Trotter-Kato theorem in

the space X = V with XN = HN. Let PN: V -. HN denote the orthogonal

projection of V onto HN in the V inner product. Then hypothesis (Cl) implies ....

Pvf -" f in the V norm for any f E V as well as P~f -. f in the H norm for - 0

any f E H.

To carry out our arguments, we shall employ several bounds for resolvents

similar to but sharper than those of (2.4), (2.5). These bounds follow from .

o\,.% ° '1

40
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results in Tanabe (c.f. Lemma 6.1 of Chapter 3 in [TI); we note that our .

operator A can be extended to A: V -. V* as in [T] so that the results given

there are applicable as used below. (In [T], the condition (B) is assumed to -

hold with X0 = 0 and we, without loss of generality, state our bounds for this

case.) The first bound we shall use yields for f E V

IRx(AN(qN))flv < ,/2 1flH (2.8)

where c is independent of N. Using this with f - PNz - PNz for z E V along

with the results of Theorem 2.2 we obtain RX(AN(qN))PNz -. RX(A(q))z in V S

norm for any z E V. This is (ii) of Theorem 2.1 with X = V, XN = HN and

pN =pN

To obtain the uniform stability bound (i) of Theorem 2.1 in the V-norm,

we make use of another bound that follows from [T]. From the last bound of

Lemma 6.1, Chap. 3 of [T] one may readily argue that for f - V

M S
IRX(AN(q))hIv IfIv (2.9)

where M is independent of N. The arguments behind (2.9) involve using

(3.51) of [T] for A* and observing that for 7 - V, v E V* arbitrary so that

RX(A)y E V= V** we have (using the usual notation for the duality product)

(R X(A)y,v)v.,v* = (v,R X(A)7)v*,v (R X(A*)v,7)v.,v

M04< IRX(A*)VlvI-Av "< --a- IvIvlv- - :

Then IR,(A)71v.. < M- - 171v and hence, identifying V and V**, we obtainIXI .. ?

M
lRX(A7V 4 - IyV for 7 E V.

' ".' -a
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We may use the bound (2.9) in the identity

TN(t;qN) tR(AN(qN))d , (2.10) -.TN~~qN =2ni r

where r is a contour (about Xo) similar to that given in [P, p. 63], to argue for Pi.

z E HN

ITN(t;qN)zIv < Me [zlv (2.11)

where 4 is independent of N. Thus one obtains ITN(t;qN)I v  Mex 0t
. (These

results are essentially given in IT]; one just needs to check the arguments to

ascertain that the constant M depends on AN only through the bounds c and c 2

of conditions (B) and (C) and the sector angle 6 for AN -- where 6 again

depends only on c, and c2.)

We may then apply Theorem 2.1 as indicated to obtain TN(t;qN)Pz -

T(t;q)z in V norm for every z E V. It remains to argue that TN(t;qN)pNz -

T(t;q)z in V norm for every z e H.

If we use the bound (2.8) in (2.10), arguments similar to those used to .,_

establish (2.11) can be made to give

ITN(t;qN)zIv ,, ijeOt-I/2 t > 0, z E HN , (2.12) %

where again M is independent of N.

Recalling that V is dense in H, then given z E H and E > 0, we may

choose zv E V such that Izv - ZIH < E. Then noting that T(t;q)z E V for t > 0, ..

we have

%' %%.

.% * -

* ,. % %
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+ ITN(t;qN)PvNZ - T(t;q)zvlv + IT(t;q)(z v - z)Iv.

From (2.12) we see that the first term in the right side of this inequality is

bounded by VXtt'/2PN - PNZvIH which, as N - approaches

iie)~ott'I/zlZVIH. The third term is also bounded by a similar expression,

while the second term approaches zero as N -" by our previous arguments.

We thus have established the convergence claimed in the statement of Theorem

2.3.

Among the examples that can be treated immediately with the above

theory are the usual parabolic systems (see [BK11, [LI). To illustrate these •

ideas, consider the estimation problem for the standard Dirichlet boundary

value problem for one-dimensional parabolic systems. That is,

au a iaui a-t - I '- j + '-(qZu) + q
3 u on fl=(0,1)

u(t,O) = u(tl) = 0, "iv

with q = (qq 2,q3 ) to be chosen (via a least squares criterion) from Q, a

compact subset of C(fl) x C(f1) x C(1l). The state spaces are H = H°()), V =

Ho(fl) and the weak form of the equation is given by

"z(t),O> + C(q)(z(t),O) 0, 0 E V
'.. *..'

where the sesquilinear form is defined as ;

• o(q)(wpf) = <q 1 DV,DP> + <q2 (f,D t> - <q3(f,0,>

,% J%-

% ..

% ' - " , .' ' . .. . , ' - . - .... .. .. , ,._, .. =,-,r,,..rl' i"- , T l;' " ' "-- li "' ' . w " ' I ' " "
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with D = a/ax. One can readily verify that conditions (A) and (C) hold,

while the coercivity condition (B) is valid if we assume elements of Q satisfy

ql(x) ) v > 0 for some constant V.

In this case one can specify the domain of A(q) by

dom A(q) = (V, E Hl(fl) I q1 DP + q Cp E H'(fl))

and A(q)p = D(qjD,) + D(q 2 ,) + qsy. For approximating elements one can use

either piecewise cubic or piecewise linear B-splines modified to satisfy the P-

Dirichlet boundary conditions.

We note that the theory above only requires compactness of Q in the

[C(fl)] s topology along with relatively weak smoothness assumptions when .0

compared with other approaches (see [BK3], [BKLI], [BKL2], [BCK]). -

Furthermore we obtain V = H1 (1) convergence of the states. Hence the theory

is complete for least squares criterion involving pointwise (in x) observations

of the state. This is obtained for little extra effort when compared with the

efforts usually required to obtain the stronger convergence (see [BCK],

[BKL I]). ,.

Other parabolic examples of great practical importance can be readily

treated in the context of this framework. For example, the 2-D thermal

tomography problem mentioned in the Introduction and discussed in [BKO] ,

results in a boundary identification problem for parabolic systems. With a •

standard transformation these problems can be readily treated theoretically and -.

computationally with the approach of this paper. Details can be found in

[BKOI.
-%.

Another class of problems of interest involves estimation of coefficients -

.1P JPd 0 6

-' a'- "

,% , .
-'A, A: - F 'f ..- '

'a ... ....
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in the Fokker-Planck or forward Kolmogorov equations (see [121) for the case

where the Markov transition process for growth is time invariant in size/age

structured population models. In this case the equations have the form

Ou 8 82 .
a u - 8 (q lu) = a2 2 %-2u ] -q 3 U , x 0  < x < 1

with boundary conditions

r a "1 Xxo rxI":

[q axx" 0 I q4  t')"1U-- i2U: ..

The associated sesquilinear form is given by (here H H°(x0,x1 ), V =

Hl(x°,x1 ))

o(q)(VO) = -<qly - D(q 2 f),Db> - 4(xo)R(q 4)(V) + <q3 ,@> •

with Rq) - j q,( )p)dt. Under appropriate assumptions on Q C L.(l)

× w~l)(fl) X Ldl) x Lm(fl), f = (x0 ,×x), (see [B2] for details) one can readily argue

that hypotheses (A), (B), (C) hold. Thus these problems also fall within the

purview of the theory developed here. .

.-'-."

-V.-- '-p.
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3. Second Order Systems

The ideas developed in the previous section can be applied to parameter

estimation problems involving second order systems of the form

ii(t) + B(q)ui(t) + A(q)u(t) = f(t) (3.1)

in a Hilbert space H where the operators A(q) and B(q) are defined via

parameter dependent sesquilinear forms in a manner similar to that of Section

2. We use the general approach given in [S]; we again assume we are given a

Hilbert space V C H that is continuously and densely imbedded in H. Let

GI(q): V x V -. C be a symmetric sesquilinear form satisfying conditions (A)

and (C) of Section 2 and the V coercivity condition (B) with X - 0. Then for

each q - Q we may define continuous linear operators A(q): V - V* given by

= (A(q)0,0V).v (3.2)

for 0,0 e V, where as customary, we have identified the pivot space H with its

dual H*, i.e., V C H H* C V* and the duality product (.,-)v.,v is the unique

extension by continuity of the scalar product <-,-> of H from H x V to

V* x V (e.g., see [S] for details). Of course, as in Section 2, we may also view

A(q) as a densely defined operator in H where o1(q)(,0) = (A(q)O,>)H for

@ E dom A(q), 4 E V. The sesquilinear form and its associated operator A

will correspond to the "stiffness" operator in the examples we treat below.

A second sesquilinear form will give rise to the "damping" term in our

examples. We assume we are given-a (not necessarily symmetric) sesquilinear

form o2(q): V x V C satisfying conditions (A) and (C) and the semicoercivitv

%" S

0, %.
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%

condition

(B') H-semicoercivitv: There exists b ) 0 such that for q 6 Q and b E V

we havewehae 2(q)(0 ,O) ), bj . (3.3) 0'

As before, under condition (C) on 02, we may define a continuous linear

operator B(q): V -, V* given by

a2(q)(O,) (B(q)0,4)v.,v. (3.4)

Again, we may alternatively view B(q) as being densely defined in H.

However, since we may wish in general to view equation (3.1) as an equation

in V* (again following classical formulations [S], [L], [T]) we shall interpret

A(q) and B(q) as members of X(V,V*). We note that from conditions (B) and

(C) on at, the form o1(q) is, for each q - Q, equivalent to the norm inner

product in V; indeed, we can use o1(q) to define a parameter dependent

equivalent inner product in V. We shall use Vq to denote the Hilbert space
'. %- a'.

consisting of the elements of V equipped with this inner product.

We shall rewrite equation (3.1) in first order form and to that end we

define the product spaces V , V x V and Xf = V x H. If <, >v denotes the

inner product in V, we may use a1 and o to define a sesquilinear form

o V x V-1Z given by
, ' --.'.

o(q)(( ,, = -<v,O> v + O1(q)(u,0) + o2(q)(v,4). (3.5)
.5

We may then write equation (3.1) in weak or variational form as

7S

(wv(t),X>r + o(q)(w(t),x) = <F(t),x>jf, X C V, (3.6)

%
%-..

'a .1' .
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where w(t) =(u(t),v(t)), X F(t) = (f (t),O) and <., >X is the usual product

space inner product. Alternatively, we may write equation (3.1) as

, ()= A(q)w(t) + F(t) (3.7)

where A(q) is the operator associated with the sesquilinear form a in the usual S

manner.

Following this approach, we define in X = V x H the operator

F 0 1 5 .

A I -A(q) -B(q)(38

on dom A(q) = ((,0) 6K I OG 6V and A(q)O + B(q)4 6 H) C V. We can readily argue

that dom A(q) is dense in If= V x H and that, under the conditions on 01 and 02, or

X~ > 0 the range of X~I - A(q) is X (see the arguments given below). Moreover, A(q)

is dissipative in IXq Vq x H since for (0.0) C- dom A(q)%

(-bI 424~ 0.

Thus by the Lumer-Phillips theorem (e.g. see Chap. 1, Thins. 4.3, 4.6 of [P]) we find

that A(q) generates a semigroup of contractions on Vq x H. Since Vq and V possess

equivalent (uniformly in q E Q) norms, we have that A(q) is the infinitesimal%

generator of a C0-semigroup T(tq) on X = V x H. If the form a 2 satisfies (3.3) with

b > 0, then one can show that this semigroup is uniformly exponentially stable,

i.e., IT(t;q)l 4 McW for some M ? I and w~ > 0. Furthermore, if the H

semicoercivity of (3.3) is replaced by V coercivity, ice., b > 0 and the H norm is-

replaced by the V norm in (3.3), then T(t;q) is an analytic semigroup on X V x H.

J. 'r 41 Pr
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Since we have o(q)(Xt) = -<A(q)xt>R for x e doam A(q) and t G V ,

V x V, one might be tempted to apply the arguments and results of Section 2

to this sesquilinear form with V and XC playing the role of the spaces V and H

in the theory of Section 2 (i.e., treat this system generated by A(q) as a first

order system in R and apply without modification the theory in Section 2). If

one did this, then conditions (A), (B) and (C) must be satisfied by o(q) using

the norms of X and V. Conditions (A) and (C) pose no difficulty under the
assumptions of (A) and (C) on al and a2 given above. However to argue that

o(q) is V coercive (condition (B) of Section 2), one finds that the H 5

semicoercivity condition (3.3) on o2(q) must be strengthened to V coercivity.

While some damping forms of interest (e.g. strong Kelvin-Voigt damping -- we

discuss this below) do satisfy this stronger condition, several important types S

of damping lead to sesquilinear forms that don't. Hence we shall modify the

arguments behind Theorem 2.2 in order to enable us to treat the more general

cases. S

We shall throughout our discussions henceforth assume that o satisfies
'p...-3

conditions (A), (B) with Xo = 0, and (C), while o2 satisfies conditions (A), (B '), (C).

Again we shall be interested in a resolvent convergence form of the Trotter-Kato

theorem and hence must consider the resolvent of the operator A(q) given in

-.. (3.8).

To motivate our discussions, consider for I > 0 the equation in X given by •

x = RX(A(q))t for x = ( k), ( = (n,'/). This is equivalent to solving for X E

dom(A(q)) in the equation (X - A(q))x = which may be written "'• .5'"

,, - S
• .. , -.

'° ,V

is ,

III..

V, -,dr, ",".". ' "t :, -,, w w " ". "°"W " %' " % ",% ' " % %' % ' " 't ", " d "S
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(3.9) -

),O + A(q)v + B(q)o = '.

If we substitute the first equation 4p =I - ?I of this system into the second

we have

x V + A(q)y + XB(q) = 7 + X17 + B(q)7 (3.10)

which must be solved for V E V. This suggests that we define, for X > 0, the .,..

associated sesquilinear form oX(q): V x V -. 1 given by

= k 2 (<,>H + 0 1(q)(y,') + Xo(q)(V,). (3.11)

Since a, is V-coercive and a2 is H-semicoercive, we find for V c V

qo q) w + o1(q)(VI) + X02(q)(1p,)-

2 + 11>2 . ...

~"2 "2•,

Hence for c V

112+ ^I > CJI1 4 (3.12)%

where X -(k2 + X b) > 0. Thus, for k > 0, the form ox is V-coercive and the

equation (3.10) is solvable for (9 6V for any given t = (n,7) in If= V x H. It follows

then that defining 4) using the first equation in (3.9), we may, for any (n,7),.

find an element X = (o,4) in dom(A(q)) which solves (3.9); i.e. for X > 0, R ,(A(q)) S

exists as an element in '(X). .. -.

The coercive inequality (3.12) will be the basis of our convergence

arguments.

- *.pp

AN,~a V N
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We consider next a Galerkin type approximation scheme for equation (3.7). -'-

As in Section 2, we assume approximation subspaces HN C V satisfying ,. .€

condition (CI). Then for any W E V =V x V and each N, there exists wN E -H...

Hx×H N satisfying as N--, J;.-,'

IVN - wIV ""0. (3.13) '''_,_. L,"

To define the approximating systems, we consider o(q) defined in (3.5)

restricted to NN -H N x H N and obtain in the usual manner the operatorsr

A N(q): X{N _. X{N. Since (3.12) holds, we have immediately that RX(AN(q)) exists

in A (N ) for X > 0. Denoting by p the orthogonal projection of onto R f we

may then prove the following convergence results which is analogous to that

WA

of Theorem 2.2 for first order systems. ,.

' VV

Theorem 3.1. Suppose that conditions (A), (B) with ko - 0, (C) for i, (A), (3)

(C) for ao2 and (CI) hold and let qN _, q in Q. Then for X > 0 we have
R(AN(qN))pN t R X(A(q))b in the V norm fuar any l manrXho.atr

Proof. Let E Si be arbitrary and put w w(q) aeR(A(q))tl ta w(q N) xists

R(AN(qN))pNk Let w (1.,eoting by pN ) so that equation (3.9) is satisfied by

= ((N",) p ,%this pair. Also, letting w cone (re7Ncers)l we have that this pair

satisfies (3.9) with q qN. In particular, using (3.10) and (3.11) we find for

OX(Cq)(',,;) =<1,1;>H + X<7, >H[ + 02q(~g .,

.-.-,. .

q N )( VN ) =<N>H + XnN, ;>H + tV(qN)(hen).orm.frny'"

%~ % % %

"'L"'

4A. A'. r

thispair Alo, lttig wN= (~N~JN) p~ -( 7 1NN) w hae tht tis pir

satsfis (.9)wit q q Inparicuar usng 3.1) ad (.11 wefin fo - P,

• e V,

= (7,>H +~(71~>H +o 2(qQi,"
0 ~(q)(~N, = hi?.

(7N>H (J(>H 2'

-'- A -'-
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Since w =w(q) e dom(A(q)) C V, we may choose W^N =(;N 4 N) in RN

satisfying (3.13). Thus, choosing If ~N-~ in HNCV we may use the

above equalities to obtain
-4.

CFX(j)('tN)- U(qN)(TpN'tN) =--N; +~-?'N 1 0
>H + H .o *

+ a 2 (q)(17';N) - 0 2 (qN)(TlN,;N).

We use this to argue that N-0in V.

Applying the estimate (3.12) to the element T V ,N-W and then using

(3.14) we f indS

V1~I, H ,1 N1  OX(qN)(;N,;N) (.5

=o(N)(TN' N) - OX(q)(V,;N) + GX(q)(T';N) -o(N)(pN N)

=- (7N-y/N>H + X~(fl.1N>H + 0 2 (q)Q1,;N) + 0 F2 (qIN)(flN,;N)

+ GXq(q~~)-0 (qN )(qN~

The last four terms on the right side of this equality may be written as

02(ql)( 7 7N-1 1, N) - oF2(q)(17N,;~N) + 2N)N;N

A A (3.16)
+ ok(q)(T N '; NN) + OX(q)(AN,;N) - OX(qIN)( pN1N)

Using the definition (3.11) of ox and the boundedness and continuity in q of

01, 02 (condition (C) and (A)) along with 4 kI IV wc may bound from above

the expression in (3.16) by0

N- NIVN(q~iNvInNIv +NI + Clpy-pNIVI;NIV

+ ~ (3.17)

'qN~~' )I NV'NV

(1+ )~q I

%p *

*% ?Z*
%'
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where C = X2k2+ C2 + IC We observe that since pN is the orthogonal ~/2 2'.
projection of XC onto fN, hypothesis (Cl) implies that (jNyN) -pN(n, 7 ) _. (nly)

in XC = V x H. Thus, InINIV 4 K for some constant K. Since N -in V, we

may also assume J l K.

Recalling that k~ > 0, we can combine (3.15), (3.16), (3.17) and the above

observations to obtain the estimate

ciIIN-v AH + Qk+ C2 )Ii1N-fl~V + (+ 'dqqN) + CIef ^NIV,

and thus ;N- 0 in V. That is, YN - N-0 in Vand hence (N - Vpin V.

Recllig hat(yNp) (NN and '"p ) 'TV"'/ satisfy (3.9) with qN and q

respectively, we have that

NS,p and 0t)=)fp- 71. ,

Thus we f ind immediately that ~k Pin V. This completes the proof that

AVN = (YN,N) - w =(Vp,4P) in the V norm.

Let TN~~N denote the C0 semigroup generated by AN~N in IfN* Then

applying Theorem 2.1 with X = IXN If n N~ A(q),weoti

immediately from the above discussions the following desired convergence

results.

Theorem 3.2. Under the hypotheses of Theoremz 3.1, we have for each t E- le and

> 0,T(~~P 4  
.T(t;q) in If, with the convergence being uniform in t on

compact subintervals.

The needed convergence results for parameter estimation problems follows

%..

N % V N N

% % d0
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directly from this theorem. In particular, for solutions of (3.7) and their

approximations we have (assuming, of course, appropriate smoothness in q of -'

initial data and the perturbation function F)

u "(t;qN) - u(t;cl) in H norm,

To illustrate the types ot' problems that can be investigated in the context of rJ

the theoretical framework developed in this section, we consider a cantilevered

Euler-Bernoulli beam of unit length and unit linear mass density. The transverse

vibrations can be described by an equation of the form (3.1) with the operators

A(cj) and B(q) chosen appropriately (see e.g. [BCR], [BR21, [R) for detailed

equations). We assume that the end at x = 0 is fixed, the end at x = 1 is free. Then

the state spaces can be chosen as H = HO0 ,l) and V = H 0(,I) = - H2 (,)wO

=yO 0). The stiff ness sesquilinear form a1 is given by

= EID2pD 2 o p-a

0 Aa

wvhere we assume the stiffness coefficient q,(x) =EI(x) satisfies q,(x) a > 0

and is in L.(0,l). The operator A(q) in (3.1) is given by A(q)qy D2 (EID 2 Y)

with a

dorn A(q) (y{ E V I EID'cy C H'(O0l), E11D2 Y(l) D(E11D2y)(I) = 1.,

If we denote by q2 the damping parameter to be discussed in the following a

examples, then the admissible parameter set Q can be taken as a compact

subset of

N. N,*

.5..
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Q = ( = (q1 ,q2 ) I qi S L(O,I), q,(x) ) cc > 0).

With this formulation, a number of important damping mechanisms can be

readily treated.

Viscous damping: In this case air or fluid damping is usually assumed

proportional to the velocity of displacement so that the term B(q)6(t) in (3.1)

has the form b6(t) for q2 (x) = b(x). The damping sesquilinear form 02 is given

by

(q)(") <b, >H

" which, for b(x) o 0, satisfies the H-semicoercivity condition (B') but of course ,

is not V-coercive. The domain of the operator in (3.8) is given by dom A(q) =

dom A(q) x V.

Kelvin-Voigt damnine: For these models the damping moment is postulated as

being proportional to the strain rate and hence the damping term has the form

22D 2 %
D(cDID(t)) where q2(x) = cDI(x). The associated sesquilinear form is given

by

o2(q)(T0'4) = <CDID 2 f.D 20>H
='-,.

which for cDl(x) 13> 0 satisfies a V-coercive condition and hence of course

the H-semicoercivity of hypothesis (B'). Letting M = EID 2  + CDID 2 0 denote

the "moment" of the beam, we have the domain of A(q) given by

dom A(q) -{(po,4) E V x HI 0 - V, X = H2(O I), i) = DI) -- 0).

If we only have cDI(x) 0, then only condition (B') is satisfied but our

V.,

N,,
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theoretical framework is still applicable. We note that results of the

framework then provide a distinct improvement over the results for the --
-I6

problems given in [BCR] (where smoothness assumptions on solutions must be

hypothesized as well as q2 > 0) and [KG] (where a stronger and less readily

characterized topology than that of C(0,1) or L.(0,l) must be used for the

compactness assumption on Q).

Spatial hysteresis damping: This damping model, which has been suggested

recently and investigated by Russell in [RU], is based on physical foundations S

that appear particularly appropriate for fiber reinforced composite beams,

e.g., beams of composite materials in which strands of fibers are lengthwise

bound in an epoxy matrix. The damping term has the form B(q)u(t) =

D((G(q) - vI)Du(t)) where G(q) is a compact operator in H°(0,1) defined by a

symmetric kernel q2 (x,) b(x,y) = b(y,x) ) 0 as

(Gqp)(x) -=- b(x,y)p(y)dy, V - H°(0,1)

with b C- H°((0,1) x (0,1)) and xx) f b(x,y)dy. The associated sesquilinear

form is given by

o2(q)(y,O) = ((vl - G)Dp,DO>H ,'iA.

which is readily seen to be H-semicoercive but not V-coercive. The generator

(3.8) for the semigroup has domain %'..

dom A(q) = ((y,O) E V x HI -6 V, EID 2p(I) = 0, ,

[D(EID2ip) + (VI - ' G)DOI(l) = 0).

%

V'-." -

- ~~~~~~~s L-]-- -a .~afa~ /h,,



-28- S

Time hysteresis damoin2: These models, referred to as Boltzmann damping

models, have been widely studied in recent years (see e.g. [F], [BF], [HW] and

the references therein) in connection with flexible structures. In an Euler-

Bernoulli beam as formulated above, the damping term B(q)u(t) can be

replaced by a term that has the form

-D2 J g(s)D u(t+s, . )ds
%.-r

where q2 = g(s) = CC 13e/Fi, a,1 > 0. This means that equation (3.1) becomes a

functional-partial differential equation or partial differential equation with

delay or hereditary term. Thus the above theoretical framework is not

directly applicable. However, as is shown in [BFW], the framework developed

in this section can be appropriately modified and extended to give a succinct e0

theoretical treatment of approximation methods involving estimate

convergence and continuous dependence on observations for these models also.

We have used methods based on the theoretical ideas in this section to
* 4.

successfully estimate damping in a number of flexible structure experiments.

To date we have studied viscous, Kelvin-Voigt, and Boltzmann damping in"-"-',

vibrations of composite beams [BWIC], [BFW.

Finally, we note that the ideas presented in this paper can be extended to

provide a framework for the treatment of nonlinear distributcd parameter 0

systems. The coercivity conditions are replaced by monotonicity assumptions

and, of course, nonlinear semigroups (evolution systems) and a nonlinear

Trotter-Kato approximation theorem play fundamental roles in development of 5

this theory. Details can be found in a forthcoming manuscript (BRR].

%4%.

_'
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